Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1188018, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37207227

RESUMEN

HIV-specific T cells are necessary for control of HIV-1 replication but are largely insufficient for viral clearance. This is due in part to these cells' recognition of immunodominant but variable regions of the virus, which facilitates viral escape via mutations that do not incur viral fitness costs. HIV-specific T cells targeting conserved viral elements are associated with viral control but are relatively infrequent in people living with HIV (PLWH). The goal of this study was to increase the number of these cells via an ex vivo cell manufacturing approach derived from our clinically-validated HIV-specific expanded T-cell (HXTC) process. Using a nonhuman primate (NHP) model of HIV infection, we sought to determine i) the feasibility of manufacturing ex vivo-expanded virus-specific T cells targeting viral conserved elements (CE, CE-XTCs), ii) the in vivo safety of these products, and iii) the impact of simian/human immunodeficiency virus (SHIV) challenge on their expansion, activity, and function. NHP CE-XTCs expanded up to 10-fold following co-culture with the combination of primary dendritic cells (DCs), PHA blasts pulsed with CE peptides, irradiated GM-K562 feeder cells, and autologous T cells from CE-vaccinated NHP. The resulting CE-XTC products contained high frequencies of CE-specific, polyfunctional T cells. However, consistent with prior studies with human HXTC and these cells' predominant CD8+ effector phenotype, we did not observe significant differences in CE-XTC persistence or SHIV acquisition in two CE-XTC-infused NHP compared to two control NHP. These data support the safety and feasibility of our approach and underscore the need for continued development of CE-XTC and similar cell-based strategies to redirect and increase the potency of cellular virus-specific adaptive immune responses.


Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Vacunas , Animales , Humanos , Macaca mulatta , Linfocitos T CD8-positivos
2.
PLoS Pathog ; 19(4): e1011298, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37075079

RESUMEN

The global SARS-CoV-2 pandemic prompted rapid development of COVID-19 vaccines. Although several vaccines have received emergency approval through various public health agencies, the SARS-CoV-2 pandemic continues. Emergent variants of concern, waning immunity in the vaccinated, evidence that vaccines may not prevent transmission and inequity in vaccine distribution have driven continued development of vaccines against SARS-CoV-2 to address these public health needs. In this report, we evaluated a novel self-amplifying replicon RNA vaccine against SARS-CoV-2 in a pigtail macaque model of COVID-19 disease. We found that this vaccine elicited strong binding and neutralizing antibody responses against homologous virus. We also observed broad binding antibody against heterologous contemporary and ancestral strains, but neutralizing antibody responses were primarily targeted to the vaccine-homologous strain. While binding antibody responses were sustained, neutralizing antibody waned to undetectable levels in some animals after six months but were rapidly recalled and conferred protection from disease when the animals were challenged 7 months after vaccination as evident by reduced viral replication and pathology in the lower respiratory tract, reduced viral shedding in the nasal cavity and lower concentrations of pro-inflammatory cytokines in the lung. Cumulatively, our data demonstrate in pigtail macaques that a self-amplifying replicon RNA vaccine can elicit durable and protective immunity to SARS-CoV-2 infection. Furthermore, these data provide evidence that this vaccine can provide durable protective efficacy and reduce viral shedding even after neutralizing antibody responses have waned to undetectable levels.


Asunto(s)
Vacunas contra la COVID-19 , Vacunas de ARNm , Vacunas contra la COVID-19/inmunología , Macaca nemestrina , Pulmón/inmunología , Pulmón/virología , SARS-CoV-2/fisiología , Animales , Anticuerpos Neutralizantes/inmunología , COVID-19/transmisión
3.
EBioMedicine ; 83: 104196, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35932641

RESUMEN

BACKGROUND: In late 2021, the SARS-CoV-2 Omicron (B.1.1.529) variant of concern (VoC) was reported with many mutations in the viral spike protein that were predicted to enhance transmissibility and allow viral escape of neutralizing antibodies. Within weeks of the first report of B.1.1.529, this VoC has rapidly spread throughout the world, replacing previously circulating strains of SARS-CoV-2 and leading to a resurgence in COVID-19 cases even in populations with high levels of vaccine- and infection-induced immunity. Studies have shown that B.1.1.529 is less sensitive to protective antibody conferred by previous infections and vaccines developed against earlier lineages of SARS-CoV-2. The ability of B.1.1.529 to spread even among vaccinated populations has led to a global public health demand for updated vaccines that can confer protection against B.1.1.529. METHODS: We rapidly developed a replicating RNA vaccine expressing the B.1.1.529 spike and evaluated immunogenicity in mice and hamsters. We also challenged hamsters with B.1.1.529 and evaluated whether vaccination could protect against viral shedding and replication within respiratory tissue. FINDINGS: We found that mice previously immunized with A.1-specific vaccines failed to elevate neutralizing antibody titers against B.1.1.529 following B.1.1.529-targeted boosting, suggesting pre-existing immunity may impact the efficacy of B.1.1.529-targeted boosters. Furthermore, we found that our B.1.1.529-targeted vaccine provides superior protection compared to the ancestral A.1-targeted vaccine in hamsters challenged with the B.1.1.529 VoC after a single dose of each vaccine. INTERPRETATION: Our data suggest that B.1.1.529-targeted vaccines may provide superior protection against B.1.1.529 but pre-existing immunity and timing of boosting may need to be considered for optimum protection. FUNDING: This research was supported in part by the Intramural Research Program, NIAID/NIH, Washington Research Foundation and by grants 27220140006C (JHE), AI100625, AI151698, and AI145296 (MG).


Asunto(s)
COVID-19 , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Cricetinae , Ratones , ARN , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas , Vacunas de ARNm
4.
bioRxiv ; 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35982677

RESUMEN

The global SARS-CoV-2 pandemic prompted rapid development of COVID-19 vaccines. Although several vaccines have received emergency approval through various public health agencies, the SARS-CoV-2 pandemic continues. Emergent variants of concern, waning immunity in the vaccinated, evidence that vaccines may not prevent transmission and inequity in vaccine distribution have driven continued development of vaccines against SARS-CoV-2 to address these public health needs. In this report, we evaluated a novel self-amplifying replicon RNA vaccine against SARS-CoV-2 in a pigtail macaque model of COVID-19 disease. We found that this vaccine elicited strong binding and neutralizing antibody responses. While binding antibody responses were sustained, neutralizing antibody waned to undetectable levels after six months but were rapidly recalled and conferred protection from disease when the animals were challenged 7 months after vaccination as evident by reduced viral replication and pathology in the lower respiratory tract, reduced viral shedding in the nasal cavity and lower concentrations of pro-inflammatory cytokines in the lung. Cumulatively, our data demonstrate in pigtail macaques that a self-amplifying replicon RNA vaccine can elicit durable and protective immunity to SARS-CoV-2 infection. Furthermore, these data provide evidence that this vaccine can provide durable protective efficacy and reduce viral shedding even after neutralizing antibody responses have waned to undetectable levels.

5.
Front Immunol ; 13: 861710, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529875

RESUMEN

DNA vaccines elicit antibody, T helper cell responses and CD8+ T cell responses. Currently, little is known about the mechanism that DNA vaccines employ to induce adaptive immune responses. Prior studies have demonstrated that stimulator of interferon genes (STING) and conventional dendritic cells (cDCs) play critical roles in DNA vaccine induced antibody and T cell responses. STING activation by double stranded (dsDNA) sensing proteins initiate the production of type I interferon (IFN),but the DC-intrinsic effect of STING signaling is still unclear. Here, we investigated the role of STING within cDCs on DNA vaccine induction of antibody and T cell responses. STING knockout (STING-/- ) and conditional knockout mice that lack STING in cDCs (cDC STING cKO), were immunized intramuscularly with a DNA vaccine that expressed influenza A nucleoprotein (pNP). Both STING-/- and cDC STING cKO mice had significantly lower type I T helper (Th1) type antibody (anti-NP IgG2C) responses and lower frequencies of Th1 associated T cells (NP-specific IFN-γ+CD4+ T cells) post-immunization than wild type (WT) and cDC STING littermate control mice. In contrast, all mice had similar Th2-type NP-specific (IgG1) antibody titers. STING-/- mice developed significantly lower polyfunctional CD8+ T cells than WT, cDC STING cKO and cDC STING littermate control mice. These findings suggest that STING within cDCs mediates DNA vaccine induction of type I T helper responses including IFN-γ+CD4+ T cells, and Th1-type IgG2C antibody responses. The induction of CD8+ effector cell responses also require STING, but not within cDCs. These findings are the first to show that STING is required within cDCs to mediate DNA vaccine induced Th1 immune responses and provide new insight into the mechanism whereby DNA vaccines induce Th1 responses.


Asunto(s)
Vacunas de ADN , Animales , Formación de Anticuerpos , Linfocitos T CD8-positivos , Células Dendríticas , Inmunoglobulina G/metabolismo , Ratones , Linfocitos T Colaboradores-Inductores , Vacunas de ADN/farmacología
6.
Elife ; 112022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35191378

RESUMEN

Despite mass public health efforts, the SARS-CoV2 pandemic continues as of late 2021 with resurgent case numbers in many parts of the world. The emergence of SARS-CoV2 variants of concern (VoCs) and evidence that existing vaccines that were designed to protect from the original strains of SARS-CoV-2 may have reduced potency for protection from infection against these VoC is driving continued development of second-generation vaccines that can protect against multiple VoC. In this report, we evaluated an alphavirus-based replicating RNA vaccine expressing Spike proteins from the original SARS-CoV-2 Alpha strain and recent VoCs delivered in vivo via a lipid inorganic nanoparticle. Vaccination of both mice and Syrian Golden hamsters showed that vaccination induced potent neutralizing titers against each homologous VoC but reduced neutralization against heterologous challenges. Vaccinated hamsters challenged with homologous SARS-CoV2 variants exhibited complete protection from infection. In addition, vaccinated hamsters challenged with heterologous SARS-CoV-2 variants exhibited significantly reduced shedding of infectious virus. Our data demonstrate that this vaccine platform can be updated to target emergent VoCs, elicits significant protective immunity against SARS-CoV2 variants and supports continued development of this platform.


Since 2019, the SARS-CoV-2 virus has spread worldwide and caused hundreds of millions of cases of COVID-19. Vaccines were rapidly developed to protect people from becoming severely ill from the virus and decrease the risk of death. However, new variants ­ such as Alpha, Beta and Omicron ­ have emerged that the vaccines do not work as well against, contributing to the ongoing spread of the virus. One way to overcome this is to create a vaccine that can be quickly and easily updated to target new variants, like the vaccine against influenza. Many of the vaccines made against COVID-19 use a new technology to introduce the RNA sequence of the spike protein on the surface of SARS-CoV-2 into our cells. Once injected, our cells use their own machinery to build the protein, or 'antigen', so the immune system can learn how to recognize and destroy the virus. Here, Hawman et al. have renovated an RNA vaccine they made in 2020 which provides immunity against the original strain of SARS-CoV-2 in monkeys and mice. In the newer versions of the vaccine, the RNA was updated with a sequence that matches the spike protein on the Beta or Alpha variant of the virus. Both the original and updated vaccines were then administered to mice and hamsters to see how well they worked against SARS-CoV-2 infections. The experiment showed that all three vaccines caused the animals to produce antibodies that can neutralize the original, Alpha and Beta strains of the virus. Vaccinated hamsters were then infected with one of the three variants ­ either matched or mismatched to their vaccination ­ to see how much protection each vaccine provided. All the vaccines reduced the amount of virus in the animals after infection and mitigated damage in their lungs. But animals that received a vaccine which corresponded to the SARS-CoV-2 strain they were infected with had slightly better protection. These findings suggest that these vaccines work best when their RNA sequence matches the strain responsible for the infection; however, even non-matched vaccines still provide a decent degree of protection. Furthermore, the data demonstrate that the vaccine platform created by Hawman et al. can be easily updated to target new strains of SARS-CoV-2 that may emerge in the future. Recently, the Beta variant of the vaccine entered clinical trials in the United States (led by HDT Bio) to evaluate whether it can be used as a booster in previously vaccinated individuals as well as unvaccinated participants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , COVID-19/prevención & control , Vacunas contra la COVID-19 , Cricetinae , Humanos , Ratones , ARN Viral , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vacunas Sintéticas , Vacunas de ARNm
7.
bioRxiv ; 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34931189

RESUMEN

Despite mass public health efforts, the SARS-CoV2 pandemic continues as of late-2021 with resurgent case numbers in many parts of the world. The emergence of SARS-CoV2 variants of concern (VoC) and evidence that existing vaccines that were designed to protect from the original strains of SARS-CoV-2 may have reduced potency for protection from infection against these VoC is driving continued development of second generation vaccines that can protect against multiple VoC. In this report, we evaluated an alphavirus-based replicating RNA vaccine expressing Spike proteins from the original SARS-CoV-2 Alpha strain and recent VoCs delivered in vivo via a lipid inorganic nanoparticle. Vaccination of both mice and Syrian Golden hamsters showed that vaccination induced potent neutralizing titers against each homologous VoC but reduced neutralization against heterologous challenges. Vaccinated hamsters challenged with homologous SARS-CoV2 variants exhibited complete protection from infection. In addition, vaccinated hamsters challenged with heterologous SARS-CoV-2 variants exhibited significantly reduced shedding of infectious virus. Our data demonstrate that this vaccine platform elicits significant protective immunity against SARS-CoV2 variants and supports continued development of this platform.

8.
Viruses ; 13(8)2021 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-34452474

RESUMEN

Selection of a pre-clinical non-human primate (NHP) model is essential when evaluating therapeutic vaccine and treatment strategies for HIV. SIV and SHIV-infected NHPs exhibit a range of viral burdens, pathologies, and responses to combinatorial antiretroviral therapy (cART) regimens and the choice of the NHP model for AIDS could influence outcomes in studies investigating interventions. Previously, in rhesus macaques (RMs) we showed that maintenance of mucosal Th17/Treg homeostasis during SIV infection correlated with a better virological response to cART. Here, in RMs we compared viral kinetics and dysregulation of gut homeostasis, defined by T cell subset disruption, during highly pathogenic SIVΔB670 compared to SHIV-1157ipd3N4 infection. SHIV infection resulted in lower acute viremia and less disruption to gut CD4 T-cell homeostasis. Additionally, 24/24 SHIV-infected versus 10/19 SIV-infected animals had sustained viral suppression <100 copies/mL of plasma after 5 months of cART. Significantly, the more profound viral suppression during cART in a subset of SIV and all SHIV-infected RMs corresponded with less gut immune dysregulation during acute SIV/SHIV infection, defined by maintenance of the Th17/Treg ratio. These results highlight significant differences in viral control during cART and gut dysregulation in NHP AIDS models and suggest that selection of a model may impact the evaluation of candidate therapeutic interventions for HIV treatment and cure strategies.


Asunto(s)
Antirretrovirales/uso terapéutico , Tracto Gastrointestinal/inmunología , Homeostasis , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Respuesta Virológica Sostenida , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Enfermedad Aguda , Animales , Tracto Gastrointestinal/fisiopatología , Inmunidad Mucosa/efectos de los fármacos , Inmunidad Mucosa/inmunología , Linfocitos Intraepiteliales/inmunología , Cinética , Macaca mulatta , Masculino , Modelos Animales , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
9.
PLoS One ; 16(6): e0253265, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34138927

RESUMEN

A therapeutic vaccine that induces lasting control of HIV infection could eliminate the need for lifelong adherence to antiretroviral therapy. This study investigated a therapeutic DNA vaccine delivered with a single adjuvant or a novel combination of adjuvants to augment T cell immunity in the blood and gut-associated lymphoid tissue in SIV-infected rhesus macaques. Animals that received DNA vaccines expressing SIV proteins, combined with plasmids expressing adjuvants designed to increase peripheral and mucosal T cell responses, including the catalytic subunit of the E. coli heat-labile enterotoxin, IL-12, IL-33, retinaldehyde dehydrogenase 2, soluble PD-1 and soluble CD80, were compared to mock-vaccinated controls. Following treatment interruption, macaques exhibited variable levels of viral rebound, with four animals from the vaccinated groups and one animal from the control group controlling virus at median levels of 103 RNA copies/ml or lower (controllers) and nine animals, among all groups, exhibiting immediate viral rebound and median viral loads greater than 103 RNA copies/ml (non-controllers). Although there was no significant difference between the vaccinated and control groups in protection from viral rebound, the variable virological outcomes during treatment interruption enabled an examination of immune correlates of viral replication in controllers versus non-controllers regardless of vaccination status. Lower viral burden in controllers correlated with increased polyfunctional SIV-specific CD8+ T cells in mesenteric lymph nodes and blood prior to and during treatment interruption. Notably, higher frequencies of colonic CD4+ T cells and lower Th17/Treg ratios prior to infection in controllers correlated with improved responses to ART and control of viral rebound. These results indicate that mucosal immune responses, present prior to infection, can influence efficacy of antiretroviral therapy and the outcome of immunotherapeutic vaccination, suggesting that therapies capable of modulating host mucosal responses may be needed to achieve HIV cure.


Asunto(s)
Antirretrovirales/uso terapéutico , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas de ADN/uso terapéutico , Animales , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
10.
Sci Transl Med ; 12(555)2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32690628

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is having a deleterious impact on health services and the global economy, highlighting the urgent need for an effective vaccine. Such a vaccine would need to rapidly confer protection after one or two doses and would need to be manufactured using components suitable for scale up. Here, we developed an Alphavirus-derived replicon RNA vaccine candidate, repRNA-CoV2S, encoding the SARS-CoV-2 spike (S) protein. The RNA replicons were formulated with lipid inorganic nanoparticles (LIONs) that were designed to enhance vaccine stability, delivery, and immunogenicity. We show that a single intramuscular injection of the LION/repRNA-CoV2S vaccine in mice elicited robust production of anti-SARS-CoV-2 S protein IgG antibody isotypes indicative of a type 1 T helper cell response. A prime/boost regimen induced potent T cell responses in mice including antigen-specific responses in the lung and spleen. Prime-only immunization of aged (17 months old) mice induced smaller immune responses compared to young mice, but this difference was abrogated by booster immunization. In nonhuman primates, prime-only immunization in one intramuscular injection site or prime/boost immunizations in five intramuscular injection sites elicited modest T cell responses and robust antibody responses. The antibody responses persisted for at least 70 days and neutralized SARS-CoV-2 at titers comparable to those in human serum samples collected from individuals convalescing from COVID-19. These data support further development of LION/repRNA-CoV2S as a vaccine candidate for prophylactic protection against SARS-CoV-2 infection.


Asunto(s)
Alphavirus/genética , Anticuerpos Neutralizantes/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , ARN Viral/genética , Replicón/genética , Linfocitos T/inmunología , Vacunas Virales/inmunología , Animales , Formación de Anticuerpos/inmunología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/prevención & control , Compuestos Inorgánicos/química , Lípidos/química , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nanopartículas/química , Pandemias , Primates , SARS-CoV-2
12.
bioRxiv ; 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32511417

RESUMEN

The ongoing COVID-19 pandemic, caused by infection with SARS-CoV-2, is having a dramatic and deleterious impact on health services and the global economy. Grim public health statistics highlight the need for vaccines that can rapidly confer protection after a single dose and be manufactured using components suitable for scale-up and efficient distribution. In response, we have rapidly developed repRNA-CoV2S, a stable and highly immunogenic vaccine candidate comprised of an RNA replicon formulated with a novel Lipid InOrganic Nanoparticle (LION) designed to enhance vaccine stability, delivery and immunogenicity. We show that intramuscular injection of LION/repRNA-CoV2S elicits robust anti-SARS-CoV-2 spike protein IgG antibody isotypes indicative of a Type 1 T helper response as well as potent T cell responses in mice. Importantly, a single-dose administration in nonhuman primates elicited antibody responses that potently neutralized SARS-CoV-2. These data support further development of LION/repRNA-CoV2S as a vaccine candidate for prophylactic protection from SARS-CoV-2 infection.

14.
Nat Commun ; 9(1): 3371, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135445

RESUMEN

The immunological and virological events that contribute to the establishment of Zika virus (ZIKV) infection in humans are unclear. Here, we show that robust cellular innate immune responses arising early in the blood and tissues in response to ZIKV infection are significantly stronger in males and correlate with increased viral persistence. In particular, early peripheral blood recruitment of plasmacytoid dendritic cells and higher production of monocyte chemoattractant protein (MCP-1) correspond with greater viral persistence and tissue dissemination. We also identify non-classical monocytes as primary in vivo targets of ZIKV infection in the blood and peripheral lymph node. These results demonstrate the potential differences in ZIKV pathogenesis between males and females and a key role for early cellular innate immune responses in the blood in viral dissemination and ZIKV pathogenesis.


Asunto(s)
Inmunidad Innata/fisiología , Macaca nemestrina/inmunología , Macaca nemestrina/virología , Virus Zika/inmunología , Animales , Quimiocina CCL2/metabolismo , Macaca nemestrina/metabolismo , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/metabolismo
15.
PLoS One ; 13(6): e0198154, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29874260

RESUMEN

A critical issue in transgene delivery studies is immune reactivity to the transgene- encoded protein and its impact on sustained gene expression. Here, we test the hypothesis that immunomodulation by rapamycin can decrease immune reactivity after intrathecal AAV9 delivery of a transgene (GFP) in non-human primates, resulting in sustained GFP expression in the CNS. We show that rapamycin treatment clearly reduced the overall immunogenicity of the AAV9/GFP vector by lowering GFP- and AAV9-specific antibody responses, and decreasing T cell responses including cytokine and cytolytic effector responses. Spinal cord GFP protein expression was sustained for twelve weeks, with no toxicity. Immune correlates of robust transgene expression include negligible GFP-specific CD4 and CD8 T cell responses, absence of GFP-specific IFN-γ producing T cells, and absence of GFP-specific cytotoxic T cells, which support the hypothesis that decreased T cell reactivity results in sustained transgene expression. These data strongly support the use of modest doses of rapamycin to modulate immune responses for intrathecal gene therapies, and potentially a much wider range of viral vector-based therapeutics.


Asunto(s)
Sistema Nervioso Central/metabolismo , Dependovirus/genética , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/inmunología , Inmunomodulación/fisiología , Primates/genética , Primates/inmunología , Animales , Animales Modificados Genéticamente , Autoantígenos/inmunología , Sistema Nervioso Central/inmunología , Dependovirus/inmunología , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/inmunología , Macaca fascicularis , Distribución Aleatoria , Transducción Genética , Transgenes/inmunología
16.
Hum Vaccin Immunother ; 14(7): 1820-1831, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29648490

RESUMEN

HIV-specific T-cell responses play a key role in controlling HIV infection, and therapeutic vaccines for HIV that aim to improve viral control will likely need to improve on the T-cell responses induced by infection. However, in the setting of chronic infection, an effective therapeutic vaccine must overcome the enormous viral genetic diversity and the presence of pre-existing T-cell responses that are biased toward immunodominant T-cell epitopes that can readily mutate to evade host immunity and thus potentially provide inferior protection. To address these issues, we investigated a novel, epidermally administered DNA vaccine expressing SIV capsid (p27Gag) homologues of highly conserved elements (CE) of the HIV proteome in macaques experiencing chronic but controlled SHIV infection. We assessed the ability to boost or induce de novo T-cell responses against the conserved but immunologically subdominant CE epitopes. Two groups of animals were immunized with either the CE DNA vaccine or a full-length SIV p57gag DNA vaccine. Prior to vaccination, CE responses were similar in both groups. The full-length p57gag DNA vaccine, which contains the CE, increased overall Gag-specific responses but did not increase CE responses in any animals (0/4). In contrast, the CE DNA vaccine increased CE responses in all (4/4) vaccinated macaques. In SIV infected but unvaccinated macaques, those that developed stronger CE-specific responses during acute infection exhibited lower viral loads. We conclude that CE DNA vaccination can re-direct the immunodominance hierarchy towards CE in the setting of attenuated chronic infection and that induction of these responses by therapeutic vaccination may improve immune control of HIV.


Asunto(s)
Secuencia Conservada , Infecciones por VIH/prevención & control , Inmunidad Celular , Vacunas contra el SIDAS/inmunología , Linfocitos T/inmunología , Vacunas de ADN/uso terapéutico , Animales , Epítopos de Linfocito T/inmunología , Productos del Gen gag/genética , Productos del Gen gag/inmunología , Infecciones por VIH/inmunología , VIH-1/genética , VIH-1/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Macaca mulatta , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunación , Vacunas de ADN/inmunología
18.
PLoS One ; 12(12): e0189780, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29267331

RESUMEN

Recent avian and swine-origin influenza virus outbreaks illustrate the ongoing threat of influenza pandemics. We investigated immunogenicity and protective efficacy of a multi-antigen (MA) universal influenza DNA vaccine consisting of HA, M2, and NP antigens in cynomolgus macaques. Following challenge with a heterologous pandemic H1N1 strain, vaccinated animals exhibited significantly lower viral loads and more rapid viral clearance when compared to unvaccinated controls. The MA DNA vaccine induced robust serum and mucosal antibody responses but these high antibody titers were not broadly neutralizing. In contrast, the vaccine induced broadly-reactive NP specific T cell responses that cross-reacted with the challenge virus and inversely correlated with lower viral loads and inflammation. These results demonstrate that a MA DNA vaccine that induces strong cross-reactive T cell responses can, independent of neutralizing antibody, mediate significant cross-protection in a nonhuman primate model and further supports development as an effective approach to induce broad protection against circulating and emerging influenza strains.


Asunto(s)
Reacciones Cruzadas , Vacunas contra la Influenza/inmunología , Linfocitos T/inmunología , Vacunas de ADN/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/genética , Macaca fascicularis , Vacunas de ADN/genética
19.
PLoS One ; 11(6): e0157535, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27309717

RESUMEN

Unlike peripheral lymph nodes (PLN), the mesenteric lymph nodes (MLN) draining the gastrointestinal (GI) tract are exposed to microbes and microbial products from the intestines and as such, are immunologically distinct. GI draining (MLN) have also been shown to be sites of early viral replication and likely impact early events that determine the course of HIV infection. They also are important reservoir sites that harbor latently-infected cells and from which the virus can emerge even after prolonged combination antiretroviral therapy (cART). Changes in the microbial flora and increased permeability of the GI epithelium associated with lentiviral infection can impact the gut associated lymphoid tissue (GALT) and induce changes to secondary lymphoid organs limiting immune reconstitution with cART. Nonhuman primate models for AIDS closely model HIV infection in humans and serial sampling of the GALT and associated secondary lymphoid organs in this model is crucial to gain a better understanding of the critical early events in infection, pathogenesis, and the role of immune responses or drugs in controlling virus at these sites. However, current techniques to sample GI draining (MLN) involve major surgery and/or necropsy, which have, to date, limited the ability to investigate mechanisms mediating the initiation, persistence and control of infection in this compartment. Here, we describe a minimally invasive laparoscopic technique for serial sampling of these sites that can be used with increased sampling frequency, yields greater cell numbers and immune cell subsets than current non-invasive techniques of the GALT and reduces the potential for surgical complications that could complicate interpretation of the results. This procedure has potential to facilitate studies of pathogenesis and evaluation of preventive and treatment interventions, reducing sampling variables that can influence experimental results, and improving animal welfare.


Asunto(s)
Colon/cirugía , Laparoscopía/veterinaria , Escisión del Ganglio Linfático/veterinaria , Ganglios Linfáticos/cirugía , Mesenterio/cirugía , Anestesia General , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Biomarcadores , Supervivencia Celular , Expresión Génica , Inmunofenotipificación , Laparoscopía/métodos , Escisión del Ganglio Linfático/métodos , Linfocitos/citología , Linfocitos/inmunología , Macaca
20.
PLoS Pathog ; 12(2): e1005409, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26845438

RESUMEN

Broadly neutralizing antibodies targeting a highly conserved region in the hemagglutinin (HA) stem protect against influenza infection. Here, we investigate the protective efficacy of a protein (HB36.6) computationally designed to bind with high affinity to the same region in the HA stem. We show that intranasal delivery of HB36.6 affords protection in mice lethally challenged with diverse strains of influenza independent of Fc-mediated effector functions or a host antiviral immune response. This designed protein prevents infection when given as a single dose of 6.0 mg/kg up to 48 hours before viral challenge and significantly reduces disease when administered as a daily therapeutic after challenge. A single dose of 10.0 mg/kg HB36.6 administered 1-day post-challenge resulted in substantially better protection than 10 doses of oseltamivir administered twice daily for 5 days. Thus, binding of HB36.6 to the influenza HA stem region alone, independent of a host response, is sufficient to reduce viral infection and replication in vivo. These studies demonstrate the potential of computationally designed binding proteins as a new class of antivirals for influenza.


Asunto(s)
Anticuerpos Antivirales/inmunología , Proteínas Portadoras/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Citocinas/metabolismo , Humanos , Virus de la Influenza A/genética , Gripe Humana/virología , Ratones , Modelos Moleculares , Mutación , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...